Doppler Radar Observations of an Asymmetric Mesoscale Convective System and Associated Vortex Couplet

1995 ◽  
Vol 123 (12) ◽  
pp. 3437-3457 ◽  
Author(s):  
James D. Scott ◽  
Steven A. Rutledge
2013 ◽  
Vol 70 (7) ◽  
pp. 1891-1911 ◽  
Author(s):  
Anthony C. Didlake ◽  
Robert A. Houze

Abstract Airborne Doppler radar documented the stratiform sector of a rainband within the stationary rainband complex of Hurricane Rita. The stratiform rainband sector is a mesoscale feature consisting of nearly uniform precipitation and weak vertical velocities from collapsing convective cells. Upward transport and associated latent heating occur within the stratiform cloud layer in the form of rising radial outflow. Beneath, downward transport is organized into descending radial inflow in response to two regions of latent cooling. In the outer, upper regions of the rainband, sublimational cooling introduces horizontal buoyancy gradients, which produce horizontal vorticity and descending inflow similar to that of the trailing-stratiform region of a mesoscale convective system. Within the zone of heavier stratiform precipitation, melting cooling along the outer rainband edge creates a midlevel horizontal buoyancy gradient across the rainband that drives air farther inward beneath the brightband. The organization of this transport initially is robust but fades downwind as the convection dissipates. The stratiform-induced secondary circulation results in convergence of angular momentum above the boundary layer and broadening of the storm's rotational wind field. At the radial location where inflow suddenly converges, a midlevel tangential jet develops and extends into the downwind end of the rainband complex. This circulation may contribute to ventilation of the eyewall as inflow of low-entropy air continues past the rainband in both the boundary layer and midlevels. Given the expanse of the stratiform rainband region, its thermodynamic and kinematic impacts likely help to modify the structure and intensity of the total vortex.


2019 ◽  
Vol 148 (1) ◽  
pp. 211-240 ◽  
Author(s):  
Rachel L. Miller ◽  
Conrad L. Ziegler ◽  
Michael I. Biggerstaff

Abstract This case study analyzes a nocturnal mesoscale convective system (MCS) that was observed on 25–26 June 2015 in northeastern Kansas during the Plains Elevated Convection At Night (PECAN) project. Over the course of the observational period, a broken line of elevated nocturnal convective cells initiated around 0230 UTC on the cool side of a stationary front and subsequently merged to form a quasi-linear MCS that later developed strong, surface-based outflow and a trailing stratiform region. This study combines radar observations with mobile and fixed mesonet and sounding data taken during PECAN to analyze the kinematics and thermodynamics of the MCS from 0300 to 0630 UTC. This study is unique in that 38 consecutive multi-Doppler wind analyses are examined over the 3.5 h observation period, facilitating a long-duration analysis of the kinematic evolution of the nocturnal MCS. Radar analyses reveal that the initial convective cells and linear MCS are elevated and sustained by an elevated residual layer formed via weak ascent over the stationary front. During upscale growth, individual convective cells develop storm-scale cold pools due to pockets of descending rear-to-front flow that are measured by mobile mesonets. By 0500 UTC, kinematic analysis and mesonet observations show that the MCS has a surface-based cold pool and that convective line updrafts are ingesting parcels from below the stable layer. In this environment, the elevated system has become surface based since the cold pool lifting is sufficient for surface-based parcels to overcome the CIN associated with the frontal stable layer.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Yi Yang ◽  
Ying Wang ◽  
Kefeng Zhu

The radar-enhanced GSI (version 3.1) system and the WRF-ARW (version 3.4.1) model were modified to assimilate radar/lightning-proxy reflectivity. First, cloud-to-ground lightning data were converted to reflectivity using a simple assumed relationship between flash density and reflectivity. Next, the reflectivity was used in the cloud analysis of GSI to adjust the cloud/hydrometeors and moisture. Additionally, the radar/lightning-proxy reflectivity was simultaneously converted to a 3D temperature tendency. Finally, the model-calculated temperature tendencies from the explicit microphysics scheme, as well as cumulus parameterization at 3D grid points at which the radar temperature tendency is available, were updated in a forward full-physics step of diabatic digital filter initialization in the WRF-ARW. The WRF-GSI system was tested using a mesoscale convective system that occurred on June 5, 2009, and by assimilating Doppler radar and lightning data, respectively. The forecasted reflectivity with assimilation corresponded more closely to the observed reflectivity than that of the parallel experiment without assimilation, particularly during the first 6 h. After assimilation, the short-range precipitation prediction improved, although the precipitation intensity was stronger than the observed one. In addition, the improvements obtained by assimilating lightning data were worse than those from assimilating radar reflectivity over the first 3 h but improved thereafter.


2020 ◽  
Vol 148 (4) ◽  
pp. 1363-1388 ◽  
Author(s):  
Daniel M. Stechman ◽  
Greg M. McFarquhar ◽  
Robert M. Rauber ◽  
Michael M. Bell ◽  
Brian F. Jewett ◽  
...  

Abstract This study examines microphysical and thermodynamic characteristics of the 20 June 2015 mesoscale convective system (MCS) observed during the Plains Elevated Convection At Night (PECAN) experiment, specifically within the transition zone (TZ), enhanced stratiform rain region (ESR), anvil region, melting layer (ML), and the rear inflow jet (RIJ). Analyses are developed from airborne optical array probe data and multiple-Doppler wind and reflectivity syntheses using data from the airborne NOAA Tail Doppler Radar (TDR) and ground-based Weather Surveillance Radar-1988 Doppler (WSR-88D) radars. Seven spiral ascents/descents of the NOAA P-3 aircraft were executed within various regions of the 20 June MCS. Aggregation modified by sublimation was observed in each MCS region, regardless of whether the sampling was within the RIJ. Sustained sublimation and evaporation of precipitation in subsaturated layers led to a trend of downward moistening across the ESR spirals, with greater degrees of subsaturation maintained when in the vicinity of the descending RIJ. In all cases where melting was observed, the ML acted as a prominent thermodynamic boundary, with differing rates of change in temperature and relative humidity above and below the ML. Two spiral profiles coincident with the rear inflow notch provided unique observations within the TZ and were interpreted in the context of similar observations from the 29 June 2003 Bow Echo and Mesoscale Convective Vortex Experiment MCS. There, sublimation cooling and enhanced descent within the RIJ allowed ice particles to survive to temperatures as warm as +6.8°C before completely sublimating/evaporating.


2005 ◽  
Vol 76 (1-4) ◽  
pp. 127-166 ◽  
Author(s):  
Nikolai Dotzek ◽  
Robert M. Rabin ◽  
Lawrence D. Carey ◽  
Donald R. MacGorman ◽  
Tracy L. McCormick ◽  
...  

2015 ◽  
Vol 143 (4) ◽  
pp. 1035-1057 ◽  
Author(s):  
Nathan Snook ◽  
Ming Xue ◽  
Youngsun Jung

Abstract In recent studies, the authors have successfully demonstrated the ability of an ensemble Kalman filter (EnKF), assimilating real radar observations, to produce skillful analyses and subsequent ensemble-based probabilistic forecasts for a tornadic mesoscale convective system (MCS) that occurred over Oklahoma and Texas on 9 May 2007. The current study expands upon this prior work, performing experiments for this case on a larger domain using a nested-grid EnKF, which accounts for mesoscale uncertainties through the initial ensemble and lateral boundary condition perturbations. In these new experiments, conventional observations (including surface, wind profiler, and upper-air observations) are assimilated in addition to the WSR-88D and the Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) radar data used in the previous studies, better representing meso- and convective-scale features. The relative impacts of conventional and radar data on analyses and forecasts are examined, and biases within the ensemble are investigated. The new experiments produce a substantially improved forecast, including better representation of the convective lines of the MCS. Assimilation of radar data substantially improves the ensemble precipitation forecast. Assimilation of conventional data together with radar observations substantially improves the forecast of near-surface mesovortices within the MCS, improves forecasts of surface temperature and dewpoint, and imparts a slight but noticeable improvement to short-term precipitation forecasts. Furthermore, ensemble analyses and forecasts are found to be sensitive to the localization radius applied to conventional data within the EnKF.


Sign in / Sign up

Export Citation Format

Share Document